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Abstract: An irreducible Markov semigroup of which the essential type
is strictly negative, has a prescribed asymptotic behaviour. For a
class of structured population models, where the number of individuals
is conserved, one can associate a Markov semigroup with the corre-
sponding backward equation, estimate the essential type and establish
irreducibility, and thus characterize the large time behaviour of the

solutions to the problem.

Introduction

In models from structured population dynamics the basic unit is the individual, and
knowledge about individual behaviour as a function of some particular i-state

(= individual state e. g. age) must be translated into balance equations for the
distribution over all possible i-states as a function of time: often this amounts
to a first order PDE with non-local arguments and/or boundary conditions (see [IL).
Since in a population model we are dealing with numbers of individuals, the corre-
sponding semigroup is positivity preserving: if moreover the number of individuals
in the population is constant then solutions of the associated backward equation
(see section 2) can be described in terms of a Markov semigroup (e. g. section 1
for a definition). Using known results about the peripheral point spectrum of the
generator of a Markov semigroup (under some additional assumptions) one can char-

acterize their large time behaviour.

In section | we shall describe the abstract results, which we apply in section 2
to a particular example. In section 3 we indicate how these results can be ex-

tended to more general models.

1. Preliminaries
Let E be a Banach lattice and {T(t)}t>o a strongly continuous (or CO-)semi—
group of bounded linear operators on E with infinitesimal generator A . By D(A)

we denote the domain of A . The spectral bourd s(A) 1is defined by
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s(A) = sup {Re A : AEg(A)} if o(A) # 0

= - if o(A) # 0.

Here o(A) 1is the spectrum of A . By 0+(A) we denote the peripheral spectrum

of A :

c+(A) = {1 € 0(A) : Rex = s(A)}

whereas this set is empty if s(A) = - » . The (Browder) essential spectrum

Gess(A) is the set consisting of all A € o(A) which are not a pole of R(-, A)
-1

of finite algebraic multiplicity. Here R(A , A) = (AI - A , X &€C \o(4) ,

denotes the resolvent operator.

The type wO(T(t)) of the semigroup {T(t)}t>o can be defined as
0, (T(6)) = lim ¢ log [(e) || . (1.1)
oo ©

In an analogous way we can define the essential type uess(T(t)) , but in order to

do so, we need some further terminology.

Let B(E) be the algebra of bounded linear operators on E . For L € B(E) we
denote by [L|a its (Kuratowsxi) measure of noncompactness (e.g. [12, 15]). Then

l'la defines a seminorm on B(E) with, among others, the following properties:

]L|as [|lL]| , LeB(E) (1.2.a)

|Lk| < L] |K| , L, K € B(E) (1.2.p)
a o3 a

|L + K[Ot = |L]uv , L, K € B(E) , K compact . (1.2.¢)

We can define mess(T(t)) by

- 1ig L
ags (T(ED) = ii: . log]T(t)[ol . (1.3)

The following relation holds (e. g. [8, 15])

wa(T(e)) = max {s(4), weg (T(EN} = max (s (4), Wagg (T(EN ), (1.4)
where SI(A) = sup {Rel : X € g(A) \ cess(A)} .
Now let K be a compact Hausdorff space and let E = C(K) be the Banach lattice

of continuous functions on K . Let | be the element of E which is identically

one on K .
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Definition. The Co-semlgroup {T(t)}tzo on E = C(K) 1is called a Markov semi-

group if for every t 20, T(t) is positivity preserving and T(t)] = |

T(t)! =1 implies that Al = 0 . For ¢ € C(K), ”¢”5| , we have lh!|gl , hence
IT()e] = T(0)]¢] < T()1 = 1 yielding that |[(e))]l =1 . so
s(A) = wO(T(t)) =0 .

For a smooth introduction into the theory of Markov semigroups we refer to the
book of Davies [3].

Theorem. Let {T(t)}tzo define an irreducible Markov semigroup on E = C(K) and
asswme that meSS(T(t)) < 0 . Then there is an  n > 0 and a strictly positive
probability measure u on K such that for every 0 < e < n there is a constant
M(e) 2 1 such that for every ¢ € E :

I TCe)o =~ <o, u>1 || = Me)e =5 o] .

Here <¢, u> = J ¢(x)du(x)

K
This result, which we shall apply to a particular problem in structured population
dynamics, follows from Davies' result on the peripheral point spectrum of an irre-

ducible Markov semigroup. Davies' results were extended by Greiner ([5, 6]) into

several directions.

2. A Markov process: satiation dependent predation

Consider an invertebrate predator whose internal state is completely characterized
by the one-dimensional quantity s , which we call satZation (= gut content).
Assume that this predator feeds on prey with a fixed weight. The predator swallows
a prey, once caught, immediately, and thus increases its satiation with a fixed
amount w . We refer to the papers of Metz & van Batenburg [9 , 10] for a very
general description of the predatory behaviour of some species of predators, e.g.

the mantid HZerodula crassa.

Let b(s) be the (mean) catch rate of a predator with satiation s .

Assumption. b € C[0, ¢ + w]; b is Lipschitz continuous on [0, ¢); b(s) >0 on
[0, ¢), and b(s) =0 on [c, ¢ + w].

So the maximum attainable satiation is s = ¢ + w . Between two catches the
satiation of the predator decreases due to digestion. We assume (and this assump-

. . ds . .
tion is justified by experiments) that digestion - += 18 proportional to
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satiation,

ds
=== - as,
t
and without loss of generality we may set a = | . Let n(t, s) denote the

satiation density at time t , i. e. for a measurable subset R €[0, ¢ + w] the

probability that the satiation St at time t lies in Q 1is given by

IQ n(t, s)ds . In particular:4§+wl(t, s)ds = 1 . Then n(t, s) satisfies the

balance equation

e, 5 - Leate, ) = - bls)nCe, $) + bls=wnlt, s - W) (2.1.2)
n(t, s) =0, s 2¢c +w . (2.1.b)

This equation is called the forward equation (e. g. [4]). The associated backuward

equation is given by
%%(t, s) + s %%(t, s) = - b(s)m(t, s) + b(s)m(t, s + w). (2.2)

The remainder of this section will be devoted to the investigation of equation

(2.2) supplied with an initial condition of the form:
m(0, s) = ¢(s), O < s <c +w. (2.3)

where ¢ € E : = C[0, ¢ + w]. Suppose we can solve the initial value problem
(2.2)~(2.3) for every ¢ € E. Then we can think of a solution n(t, « ;¢ ) of the

forward equation (2.1) with initial data
n(0, ;¥ = (=),

where ¢ 1is a Borel measure on [0, ¢ + w], as a linear functional on
E=C[0, ¢c +w]. For ¢ € C[0, c + w]:

ctw ctw
I ¢(s)n(t, ds; y) = 6 m(t, s; ¢) v(ds)
0

where m(t, « ; ¢) 1is the solution of (2.2)-(2.3) . We call such solutions

n(t, - ;¥) weak *solutions.

Remark. In probability theory one often works with transition probabilities in-

stead of densities. Let St be the stochastic variable denoting satiation at
time t . Let

P(t, sg» 8) = Prob(stz s | So = 55 )
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Then in terms of n

ctw
P(t, o s) = I n(t, doy & )
s So
where 650 is the Dirac measure at s = sy - Then P obeys (c. f. [7h:
P oP S
ST 35 T sfw b(a) BSP(t, SO’ o)dao .

We write (2.2)-(2.3) abstractly as

£ () = an(®), m0) = s€E,

where A is the closed operator on E with domain

1,1
loc

D(A) = {p € W [0, c+w]l: s ~»s¢'(s)€ E}

given by
(AP) (s) = = s¢'(s) - b(s)p(s) + b(s)é(s + w).
Remark. The abstract forward equation looks as follows:

dn _ ,, _
T A n(t) , n(0) =y,

where A' 1is the adjoint of A .

We will show the following
- A generates a Markov semigroup {T(t))}tzo
- W (T(t)) <O

ess

- {T(t))}tzo is irreducible.
We write

where the closed operator AO with domain D(AO) = D(A) 1is given by

(Ap$) (s) = = s6'(s) - b(s)¢(s)
and B is the bounded linear operator

(Bg)(s) = b(s)(s + w).

Defining

203

(2.4)



204 HJ.A.M. Heijmans

E(s) = exp ( - z Eégl do)

it is easy to see that A0 generates the strongly continuous positive semigroup

{Ty(e)},y siven by

1

E(se © -t
(To(t)¢($) = —é%gy— ¢(se ), s €[0, ctw], £t 20 .

Now a standard perturbation result yields that A = AO + B also generates a
strongly continuous semigroup {T(t)}t>0 . Note that this result also follows

from the positivity of R(X, A) for X € R large enough (e. g. [1]). We have

(L) = L&, T.(v) ,
1= 1

0

where

t .
Ti(t) = i’%(t—s) B Ti_](s)ds ,t=20,1z21

Since B defines a positive operator we find that {T(t)}t>0 is a positive semi-

group. Obviously | € D(A) and Al = 0 , hence T(t)l= 1
Proposition. A4 generates a Markov semigroup {T(t)}t>0 .

We can write down the following explicit expression for Tl(t):

t+ -t -T
T E(se "+ we

t+r) E(se
E(se_t+r+ w

E(s) cp(se"t + we_T)dT

(Tl(t)¢(s) = } b(se
0

Application of the Arzela-Ascoli theorem gives that T](t) is compact for all

t 20, and it follows that U(t) = Z?=l Ti(t) is compact if t 2 O . By (1.2)
IT(t)|a = |To(t) + U(t)|a = |T0(t)la < || T (£) I

and from (l1.1) and (1.3) we find

wess(T(t)) < wO(To(t))

From the Lipschitz continuity of b it follows that there exist positive con-

stants O < o, < m, < = such that

where y = b(0) > 0 . Now
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! -yt ™

L - -yt

el Irooll = | T&t)llls;;«e* .
therefore wo(TO(t)) = -y <0 and we have proved
Proposition. mess(T(t)) < -y <0.

Finally we have to show
Proposition. {T(t)}t>o 78 irreducible.

Proof. VOIGT [14] has proved that a closed ideal in E 1is invariant under
{T(t)}tzo if and only if it is invariant under both {To(t)}tzo and B . Now
let J be a closed ideal in E . Then J is of the form: J = {6&C[0, ¢ + w]:

¢ vanishes on Q}, for some closed subset Q S [0, ¢ + w] (see [13]). Now suppose

that J 1is invariant under {To(t)}t>o and under B . Then

i) s€eQq=>se "€, tz>0

il) s€Q, s<¢c =>s +w€E Q.

This is only possible if Q@ =@ or @ = [0, ¢ + w] corresponding to the cases

J=E and J = {0} respectively, which proves the irreducibility of {T(t)}t>0' 0

So we may apply the theorem of section | which says that there exists a strictly
positive prcbability measure u on [0, ¢ + w] and an n > 0 such that for every
such that for every ¢ , 0 < € < n there is an M(g) 2 1 such that for every

seclo, ¢ + wl:
[ TCe)e =< o,u>1 [lsM(e)e ™ o] .

In terms of the solutions n(t, <, y) of the forward equation (2.1), where ¢ is

a probability measure on [0, ¢ + w], this can be translated into

n(t, ¢+, ) >u, tre,

exponentially with respect to the weak * topology. We call u the stable satiation

density.

3. Extensions to some other population models

The example discussed in the previous section in special in the sense that

c+w

fO n(t, ds) is a conserved quantity. Although in general population models this
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is not true due to births and deaths, one can sometimes transform the problem in
such a way that a similar relation is satisfied. We shall illustrate this idea by
means of the cell fission model without death (e. g. 3h.

Consider a cell population whose individuals can be characterized by their size x.
The population reproduces by equal fission of individuals cells. Let g(x) be the

growth rate and b(x) the division rate.

Assumption. i) g € CI[O, 1]; g(x) >0 on [0, 1]; g(1) =0 and g'(1) #0 .
ii) b is Lipschitz continuous on [0, 1] ; b(x) >0 on (O, 1].

Let n(t, x) be the size density at time ¢t , then n obeys the balance equa-

tion.

3 (6, 0+ = gGon(e, D)= - beORlE, ©) + (20n(E, 2%) (3.1.2)
(e, 0) =0 . (3.1.b)

Note that we do not have conservation of number due to factor 4 . The backward

equaticon takes the form
3m 3m _ 1
o (6% - 8(x) == (6,x) = = b(x)m(t,x) + 2b(x)m(t, 5 x), (3.2)

which we can write abstractly as

dm
i (t) = Am(t) ,
where A is the closed operator on E = C[0, 1] with domain

= fud ]’l . e A
D(a) = {9 € wloc[o, 1]: g-o' € clo, 1]}

given by

(86) (x) = g(x)6" (x) - b(x)o(x) + 2b(x)¢(;x).

Proposition. There is an o >0 and an element ¢JE clo, 1], ¢ (x) >0,
; o

x € [0, 1], such that A¢ = ad

a o

This proposition will be proved at the end of this section. So ¢a satisfies
1
t = -
g(x)e" (x) b(x)¢ (x) = 26(x)¢ (%) + ap (x)

Substituting in (3.1)

[

v(t,x) = e t ¢a(x)n(t,x)
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we obtain the following equation for v

9 9
3%-(t,x) * 5y (8(x)v(t,x)) = - B(x)v(t,x) + 28 (2x)v(t, 2x)
v(t, 0) =0,

where
1
¢ ( 5x)
B(x) = 2b(x) » 227
¢a(X)

and we see immediately that

d 1
e 6 v(t,x)dx = O

so we can apply the same techniques as we did in § 2.

Remark. Abstractly this last relation can be written as:

-%E< 1, v(t) > = 0. Note that formally

d d -at
TTE< 1, v(t) > It

i

¢a-n(t) >

at

L}

-at - dn
-a<l, e ¢a-n(t)> *o<le Ty -a?(t)>

-at dn -at ' —-at ~at
LY = = > = < >
Now <I, e ¢a It (£)> e < ¢a’ A'n(t)> e < A¢cl , n(t) ae ¢a,n(t)

= a<l, e-at¢a *n(t) >, and indeed —%E< 1, v(t) > = 0. Here A' stands for the

adjoint of A .

Proof of iti L E (x) = (—}f“b(i)
roof of proposition. Let X exp 0 B(®

then Ex(l) =0 . Now Ap = A can be rewritten as Kk¢ = ¢ , where for

Re A + b(l) >0, Koo clo, 1]»clo, 1] 1is the compact operator
2 L b

BCERS

dg ). If ReX+ b(l)> 0

1
(K, 0) GO) = B, () ¢(E)E.

If X 1is real, A + b(l1) > O then KX is a positive operator with spectral

radius r(KX) > 0 , hence r(KA) € Po(KA). Let ¢X > 0 be such that ]
Kooy =18, , where r, = r(Kk). (Such a ¢, does exist). If ¢, =0 on [O,—Eﬂ
then KA¢A = rx¢x = 0 which is a contradiction. So ¢A(x) > 0 for at least one

x € (O,—%é but this implies immediately that ¢A(x) >0 for every 0 < x <

(also in x = 1!). Since
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2 Lo b -
< = —==E dg =2
(kol)(X) EO(X) i 2(5) 0(6) 2
we find Kol 2 2+ 1 hence r(l(o) > 2 . Since X — r(K)‘) is continuous and
r(KK) >0 as X » = we find an o> O such that r(Ku) = 1 . Now the result

follows. O
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